- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Gatterbauer, Wolfgang (1)
-
Kennedy, Oliver (1)
-
Meneghetti, Niccolo' (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tuple-independent probabilistic databases (TI-PDBs) han- dle uncertainty by annotating each tuple with a probability parameter; when the user submits a query, the database de- rives the marginal probabilities of each output-tuple, assum- ing input-tuples are statistically independent. While query processing in TI-PDBs has been studied extensively, limited research has been dedicated to the problems of updating or deriving the parameters from observations of query results . Addressing this problem is the main focus of this paper. We introduce Beta Probabilistic Databases (B-PDBs), a general- ization of TI-PDBs designed to support both (i) belief updat- ing and (ii) parameter learning in a principled and scalable way. The key idea of B-PDBs is to treat each parameter as a latent, Beta-distributed random variable. We show how this simple expedient enables both belief updating and pa- rameter learning in a principled way, without imposing any burden on regular query processing. We use this model to provide the following key contributions: (i) we show how to scalably compute the posterior densities of the parameters given new evidence; (ii) we study the complexity of perform- ing Bayesian belief updates, devising efficient algorithms for tractable classes of queries; (iii) we propose a soft-EM algo- rithm for computing maximum-likelihood estimates of the parameters; (iv) we show how to embed the proposed algo- rithms into a standard relational engine; (v) we support our conclusions with extensive experimental results.more » « less
An official website of the United States government
