skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Meneghetti, Niccolo'"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Tuple-independent probabilistic databases (TI-PDBs) han- dle uncertainty by annotating each tuple with a probability parameter; when the user submits a query, the database de- rives the marginal probabilities of each output-tuple, assum- ing input-tuples are statistically independent. While query processing in TI-PDBs has been studied extensively, limited research has been dedicated to the problems of updating or deriving the parameters from observations of query results . Addressing this problem is the main focus of this paper. We introduce Beta Probabilistic Databases (B-PDBs), a general- ization of TI-PDBs designed to support both (i) belief updat- ing and (ii) parameter learning in a principled and scalable way. The key idea of B-PDBs is to treat each parameter as a latent, Beta-distributed random variable. We show how this simple expedient enables both belief updating and pa- rameter learning in a principled way, without imposing any burden on regular query processing. We use this model to provide the following key contributions: (i) we show how to scalably compute the posterior densities of the parameters given new evidence; (ii) we study the complexity of perform- ing Bayesian belief updates, devising efficient algorithms for tractable classes of queries; (iii) we propose a soft-EM algo- rithm for computing maximum-likelihood estimates of the parameters; (iv) we show how to embed the proposed algo- rithms into a standard relational engine; (v) we support our conclusions with extensive experimental results. 
    more » « less